32 research outputs found

    Challenges with Petabyte-Scale Flows and Beyond (White Paper)

    Get PDF

    Screening interacting factors in a wireless network testbed using locating arrays

    Get PDF
    Wireless systems exhibit a wide range of configurable parameters (factors), each with a number of values (levels), that may influence performance. Exhaustively analyzing all factor interactions is typically not feasible in experimental systems due to the large design space. We propose a method for determining which factors play a significant role in wireless network performance with multiple performance metrics (response variables). Such screening can be used to reduce the set of factors in subsequent experimental testing, whether for modelling or optimization. Our method accounts for pairwise interactions between the factors when deciding significance, because interactions play a significant role in real-world systems. We utilize locating arrays to design the experiment because they guarantee that each pairwise interaction impacts a distinct set of tests. We formulate the analysis as a problem in compressive sensing that we solve using a variation of orthogonal matching pursuit, together with statistical methods to determine which factors are significant. We evaluate the method using data collected from the w-iLab.t Zwijnaarde wireless network testbed and construct a new experiment based on the first analysis to validate the results. We find that the analysis exhibits robustness to noise and to missing data

    Dynamic source routing for ad hoc networks using the global positioning system

    Get PDF
    Abstract-This paper proposes a new routing protocol for ad hoc networks built -around the source routing technique combined with the location (e.g., GPS coordinates) of nodes obtained by an energy and distance smart dissemination mechanism. The key new observation used is that the location information provides each node with a snapshot of the topology of the complete network from which a source route may be computed locally rather than through route discovery. The resulting protocol has reduced delay, and is more bandwidth and energy efficient, than both traditional (proactive and reactive) ad hoc routing protocols, as well as location based routing protocols
    corecore